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1. Bayesian Calibration - Case 1 E;
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* @ isan unknown constant

* Likelihood function based only on 0

measurement error (X and Y)
- YD(X) — Ym(X, 0) + gD

— EDNN(O, O-D)
* Update distribution of 8 with data 6
_ __Pr(¥pl6)f(6) X > {P,xHx ¢}
f(6lYp) [ Pr(Ypl6)f(6)de Y > {w, 0}
6 > {(E,v,T,L,R}

Additional observations tend to reduce uncertainty in
(i.e., distribution converges towards a single value)



Bayesian Calibration 2 Case 2 E;
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* Update distribution of ¥ with data X > (P, x, H x,¢)
Y 2 {w, o}

_ Pr(YplY)f(y) 0 > {E,v,T,L, R}
fWIYp) = [ Pr(Yplp)f ()dyp Pi > 2777

* @ isan unknown random variable

— 0;~fp,(60;| P;)

— Tank-to-tank variability

* Likelihood based on measurement
error (X and Y), and variability of 0
- Y (X) =Y,(X,0) + ¢p
— ep~N(0,0p)

Additional observations tend to reduce uncertainty in Y
(i.e., family of distributions of 8 converges towards a single distribution)



Johnson family of distributions

PDF:

Inverse CDF: Z =y +6.g[(x-¢&)/ 1]

Z - standard normal variate

g(y)=In(y), for lognormal (S, )

= In[yﬂ/y2 +1}, for unbounded (S,)

= In[y /(1-y)] for bounded (Sg)
=y, for normal (Sy)

0 [ X=¢ 1 (X
fx(x)_lmg( 7 jexp{ 2[y+5 g[

CDF: F(x)=o{y+s.glx-¢) 4]}
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0> (E,v,T,LR)
Y; 2 {6i,¢0, A7)




Sequence of two calibrations E;
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* Family of Johnsons for each
parameter 0O fitted to data sets 2
and 4 (direct measurements) 2
Bayesian

* This becomes the prior for
calibration with data set 5
(measure displacement, no liquid)

* |Integrate over distribution
parameters Y to produce
unconditional PDF for each 8, for
propagation

« Spatial variability within each tank
6 is arandom field
« Ergodicity assumption



Gaussian Process (GP) Surrogate Model E;
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* C(Calibration with data set 5 is expensive due to the need for
nested sampling over aleatory uncertainty (i.e., variability of 9)
— Surrogate model is necessary even for a relatively cheap model

* GP composed of two parts:
— Mean function m (simple constant used here)
— Covariance function k (squared exponential decay used here)

1 (xi—x))°
() = vexpl- 5, 6

* GP prediction mw(yp|xp)~N(u,X)

-1
u=m(xp) + Kpr(Krr + 0p°1) "~ [yr — m(xr)]
= Kpp — Kpr (Krr + 0,° D)™ Krp



Unconditional distribution
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* Integrate over distribution parameters ¥ to produce unconditional PDF
for each 6, for propagation

« 1 Prior Family of Johnson Distributions for E 107 Prior Unconditional KDE for E
1 T T T T T T T T T T

PDF

* After integration, the aleatory and epistemic uncertainties can no longer
be separated in propagation

* However, need to validate model before propagation



Calibrated Posterior Distributions
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2. Model validation g
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Quantitative Methods
1. Classical hypothesis testing
2. Bayesian hypothesis testing (equality and interval) Probability measures
3. Model reliability metric ‘l,

4. Area metric Useful in Roll-up to prediction UQ
5. K-L divergence

6 Real-space comparison
Bayesian hypothesis testing Model reliability metric
* Comparison of two hypotheses (HyandH;) | * Pred >y Obs 2 z

— H,: model is correct, H; : model is incorrect
* Hy=>|ly-2z=d

* Compute P(H,)
* P(Hy)=1-P(Hy)

Rebba et al, RESS 2006;

: . — + Jiang & Mahadevan, RESS 2006;
Prob(model is correct): Pr(Hy,|D) =B /B+1 Rebha & Mahadevan, RESS 2006

Ling & Mahadevan, RESS 2013.

 \alidation metric > Bayes factor

B = Pr(D[H,) D - obs data
Pr(D|H,)




Model Reliability Metric
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Model reliability metric

P(G) = P(|Ym(X) = Yp(X)| < 6)

Model prediction affected by

Epistemic uncertainty about model

parameters 0

Model errors (numerical & model form)

P(G)

Ym YD

) )

Validation should only assess epistemic uncertainty in model

Closely Matching Observation Distribution

035

PDF

005

Reasonable when there is
only measurement noise
- Spreads in prediction
and observation come
from different sources



Model Reliability Metric Computation
(under aleatory and epistemic uncertainty)

* In the presence of aleatory uncertainty in 9:

— Integrate prediction over aleatory uncertainty (otherwise will be
penalized for aleatory component)

- P(G) = P(|EglY1n(X,0)] = Yp(X)| < 6)

— Set the tolerance based on average aleatory uncertainty Ej, [aym]
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Model Reliability Metric Computation
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Prediction family at P = 30.849, X =0, ¢ =90

Prediction family at P = 30.849, X =0, ¢ = 30

. " * Integrate prediction

over the aleatory

If R | uncertainty

£ /ff: ;‘--ﬂl‘ I':‘::I e, 7 | . . .
T T T S —= | * Mean prediction is then
urely epistemic
WREONY (MR purely ep
Igggdel Reliability Computaion for P = 30.849, X =0, ¢ =30 I\:ls%del Reliability Computation for P = 30.849, X =10, 4 = 90 * TO I e ra n Ce 9
S—v—— — e e ” Observation + 2oy,

300 || === Aleatory Delta Bounds T m

i |* Tolerance approach is
5 | 8 conservative

-S.DB -0 IDB -D.ID4 -0 62 DI D.IDQ !Iﬂfi D.IDB 0.08 -DD.1 -0 68 -D.IDB Zﬂl’ 0.0z DI 0.0z



Computational Challenge E;
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* Separation of aleatory and
epistemic uncertainty in
. . . Displacement vs. Tank Location for P =30.85, y=0.9, and H= 35
validation requires a double-

|00p approach (expensive) DDQEE |

* Two options:
— Use a surrogate (e.g. GP) and x 0
include surrogate error in metric
— Use original model for sparse
sampling and/or parallelize
computations

* Displacement response is non-
linear across space = need
adaptive training point selection



Validation Results E;
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* Mean model reliability at

each spatial tank location
— Averaged over 12 conditions
— 4 tanks, 3 input conditions

Spatial Variation of Mean Model Reliability

* Model tends to perform
better for larger values of X

and ¢

* Mean MR =0.39 across all
20 inputs and locations

Model Reliability




3. Integration of Calibration and Validation E;
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* Weighted average of the model parameters
— f(8) - Calibrated unconditional parameter distribution
— £(0) > Expert opinion distribution (data set 1)
— f(0|D") = Predictive distribution

f(O1D") = P(G)f () + P(G)f (6)
P(G) =1-P(G)

* Uncertainty information on manufacturer data is an important
component of the prediction uncertainty

* Two potential options:
1. Elicit further information from the manufacturer

2. Consult literature (e.g. National Bureau of Standards: Development of a
Probability Based Load Criterion for American National Standard A58)



Integrated Parameter Distributions
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Conservatism of Tolerance Setting Approach E;
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* Scenario 1: Model under-predicts observed variability 2
small tolerance = low model reliability = higher weight on
manufacturer data (larger uncertainty)

* Scenario 2: Model over-predicts observed variability = high
tolerance = high model reliability = higher weight on the
large posterior uncertainty

* Thus, in either case, predicted distribution’s spread is larger



4. Failure Probability Prediction E;
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* Propagate integrated
distribution of 8 through the

m O d e I 1o Failure Probability Stress Prediction

-Yield Stress
-Max Stress

* The yield stress is fit to a
family of Johnson
distributions

Frequency

—
T

* Unconditional yield stress
distribution is compared with D
the maximum stress T e e
prediction

Predicted failure probability = 0.0075




Summary Ea
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1. Model Calibration
—  Calibrate Johnson distribution parameters that define aleatory variability
—  Priors: datasets 2 (E, v, and t) and 4 (L and R)
—  Update with data set 5
—  Ergodicity assumption (spatial variability and tank-to-tank variability)

2. Model Validation

—  Model reliability metric aimed at epistemic uncertainty
—  Propagate calibration uncertainty and validate on data set 6

3. Integration of Calibration and Validation
—  Weight the calibration results with validation results
—  Poor validation results = use expert opinion (data set 1)

4. Prediction

— Integrated distribution propagated for failure probability and margin
computations



